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Indeterminate secondary Hopf bifurcations in nonlinear oscillators
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A forced Van der Pol–type oscillator which exhibits secondary Hopf bifurcations is examined. Subcritical
secondary Hopf bifurcations can arise when an unstable torus coalesces with a stable periodic cycle giving a
jump to a disconnected attractor. We show that under the variation of a control parameter in the direction of
instability indeterminate subcritical secondary Hopf bifurcationsmay occur where the outcome is extremely
sensitive to any finite perturbation given to the system.@S1063-651X~97!08108-7#

PACS number~s!: 05.45.1b
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Self-excited oscillations occurs in many branches in ph
ics and engineering@1#. For example, electronic circuits wit
nonlinear resistive properties often exhibit self-sustained
cillations @2#; aeroelastic flutter at high supersonic spee
can induce large amplitude oscillations@3#; dynamic insta-
bilities of pipes conveying fluid@4–6#; buildings subjected to
wind-induced oscillations@7#; and limit cycles produced by
biochemical and chemical reactions@8#.

In this paper we consider the determinacy of the outco
of a nonlinear oscillator that exhibits secondary Hopf bifu
cations. We show that under the variation of a control
rameter in the direction of instability, subcritical bifurcation
may be indeterminate in which we cannot tell to which
tractor the system may settle. Identifying such indetermin
subcritical secondary Hopf or Niemark bifurcations clea
contributes to our understanding of bifurcational phenome
As described in a recent classification study@9#, such a bi-
furcation was generically possible, but no example had
been presented in the literature. Related studies on ind
561063-651X/97/56~4!/4857~3!/$10.00
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minate Hopf bifurcations can be found in@10#.
For systems modeled by nonlinear oscillatorsẍ1m ẋ

1v2x1 f (x,ẋ)50, where f (x,ẋ) contains the nonlinea
terms, one mechanism by which the equilibrium state of
system~at x5 ẋ50! can lose its stability is theHopf bifur-
cation; in this case it is associated with the vanishing
linear damping in the motion of an oscillator. Iff (x,ẋ)50
the system is linear and the postcritical motion is typified
oscillations whose amplitude grows to infinity. The additio
of nonlinear terms can destroy this feature. Depending u
the stabilizing or destabilizing nature off (x,ẋ) in the vicin-
ity of the equilibrium state,supercriticalHopf or subcritical
Hopf bifurcations may occur. If one were to inspect the ma
ping eigenvalues at the point of instability there would be
pair of complex conjugate eigenvalues which cross the u
circle.

Supercritical Hopf bifurcations are continuous and alwa
determinate, in which the loss of stability of the equilibriu
state gives rise to a limit cycle; in effect this form of bifu
d-
FIG. 1. Schematic representation of secon
ary Hopf or Niemark bifurcation.
4857 © 1997 The American Physical Society
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cation of an equilibrium point can be categorized as the se
ration point between an area contracting region with posi
damping, and an area expanding region due to nega
damping, at which the previously stable equilibrium po
becomes unstable, and a limit cycle develops. On the o
hand, subcritical Hopf bifurcations, as shown in Fig. 1~a!, are
discontinuous. The equilibrium which is stable form,mc
becomes unstable atm5mc ; this occurs where there is coa
lescence of an unstable limit cycle with the stable equi
rium state. Here any small perturbation from the equilibriu
state results in a jump to a disconnected attractor.

We may extend the bifurcations of equilibria to bifurc
tions of cycles by considering a three dimensional differ
tial equation systemẋ5F(x,m), exhibiting periodic cycles
m,mc . Suppose that at these parameter values the syste
locally dissapative. Ifm were to increase tomc , where the
system is locally conservative, while considering that form
,mc it is area expanding in the neighborhood of the perio
cycle, atm5mc a bifurcation analogous to the supercritic
Hopf bifurcation takes place@11#. This bifurcation is often
called asecondary Hopf bifurcationor a Niemark bifurca-
tion. Subcritical forms of this bifurcation occur when dest
bilizing nonlinearities dominate as the periodic cycle los
its stability. Figure 1~b! shows a subcritical secondary Ho
bifurcation. Here an unstable torus coalesces with a st
periodic cycle atm5mc leaving an unstable periodic cycl
for m.mc .

We shall consider the example of a sinusiodally forc
nonlinear oscillator@12#

ẍ1m ẋ1v2x1 f ~x,ẋ!5F sinvt.

FIG. 2. Schematic representation of the saddle of connecti
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Various authors have studied this type of problem: Ca
wright and Littlewood@13# showed that competing subha
monic responses may occur at the same set of parame
Hayashi@14# showed that for small forcing levels the osc
lator does not lock onto the forcing frequency. Here t
steady state is compounded with two frequencies, the nat
frequency and the forcing frequency exhibiting a quasipe
odic response; Guckenheimer and Holmes@15# outlined bi-
furcation diagrams showing the possibility of chaotic beha
ior; Shaw@16# observed steady state chaotic behavior.

In particular, we consider a periodically forced oscillat
with nonlinear damping and nonlinear stiffness characte
tics that has the ability to escape from a asymmetric sin

.

FIG. 3. Indeterminate subcritical bifurcations.~a! Attractor-
basin phase portrait just prior to an indeterminate subcritical bi
cation in the window 21.2,x,1.2, 21.0,y,1.0. Here F
50.01, m50.03, D50.9. Gray shading indicates the basin of a
traction of the period-one solution; white shading for the basin
attraction of1infinity, black of 2infinity. The dot represents the
attractor. ~b! A blow up of ~a! in the window 20.3,x,0.3,
20.3,y,0.3.
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potential well,V(x)5x2/21(D21)x3/32Dx4/4

ẍ1m ẋ2 ẋ31x1~D21!x22Dx35F sinvt, ẋ[y.

We shall consider the case whereF50.01 andv50.95. For
relatively large values ofm there is a stable periodic attracto
Sn that orginates fromF5x5y50. As we reduce the contro
m this periodic oscillation loses its stability at a subcritic
secondary Hopf bifurcation beyond which the divergence
positive and all trajectories diverge tox56`. As regards
the basin structure, the basin shrinks around the attractor
pinches it off at the critical control parameter; the size of
basin drops continuously to zero as the bifurcation is
proached. The nonlinear stiffness corresponds to a m
stable well similar to that in Fig. 2. The parameterD allows
us to vary the relative heights of the two potential barrie
Taking the left hand barrier to be the higher, as drawn, i
clear that if the heights are very different then the bifurcat
will be determinate, with all motions tending tox56`.
Conversely, if the heights are nearly the same, the bifu
tion will be indeterminate, with adjacent motions differin
perhaps in their starting phase heading tox56`. Figure
3~a! shows the basin structures in the Poincare´ section just
before the bifurcation with Fig. 3~c! showing a blow up in
on
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the vicinity of the attractor. In our example we have chos
m50.03 with mc'0.016. The critical condition, given on
separating these two forms of bifurcations, is represented
the saddle connection, in which a trajectory climbing out of
the well under positive divergence can just pass from
lower hilltop to the higher hilltop. This is termed aregular
indeterminate bifurcation~the generation of such a bifurca
tion is described in@15,17,18#!. Here basins accumulate
with vanishing thickness, onto the unstable limit cycle,
what is termed by Stewart and Ueda@18# a ‘‘mosquito coil
structure.’’ The outcome of this local bifurcation is clear
unpredictable; in any real situation, due to the inherent
certainties in the specification of the initial conditions or p
rameter values, long term predictability will be lost an
hence the jump will be indeterminate.

In summary, we have described the phenomenon of in
terminate subcritical secondary Hopf or Niemark bifurc
tions. We have shown that when such bifurcations occur
cannot tell to which attractor the system may settle. Ide
fying such an indeterminate subcritical secondary Hopf
furcations clearly contributes to our understanding of bif
cational phenomena since no example has yet been pres
in the literature.
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