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Indeterminate secondary Hopf bifurcations in nonlinear oscillators
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A forced Van der Pol-type oscillator which exhibits secondary Hopf bifurcations is examined. Subcritical
secondary Hopf bifurcations can arise when an unstable torus coalesces with a stable periodic cycle giving a
jump to a disconnected attractor. We show that under the variation of a control parameter in the direction of
instability indeterminate subcritical secondary Hopf bifurcatiamay occur where the outcome is extremely
sensitive to any finite perturbation given to the systE81.063-651X%97)08108-7

PACS numbeps): 05.45+b

Self-excited oscillations occurs in many branches in physminate Hopf bifurcations can be found [ib0].
ics and engineerinpl]. For example, electronic circuits with For systems modeled by nonlinear oscillators ux
nonlinear resistive properties often exhibit self-sustained os+ w?x+f(x,x)=0, where f(x,x) contains the nonlinear
cillations [2]; aeroelastic flutter at high supersonic speedgerms, one mechanism by which the equilibrium state of the
can induce large amplitude oscillatiof@]; dynamic insta- system(at x=x=0) can lose its stability is thélopf bifur-
bilities of pipes conveying fluifi4—6]; buildings subjected to catior in this case it is associated with the vanishing of
wind-induced oscillation§7]; and limit cycles produced by linear damping in the motion of an oscillator. fifx,x) =0
biochemical and chemical reactioft. the system is linear and the postcritical motion is typified by

In this paper we consider the determinacy of the outcomescillations whose amplitude grows to infinity. The addition
of a nonlinear oscillator that exhibits secondary Hopf bifur-of nonlinear terms can destroy this feature. Depending upon
cations. We show that under the variation of a control pathe stabilizing or destabilizing nature 6x,x) in the vicin-
rameter in the direction of instability, subcritical bifurcations ity of the equilibrium statesupercritical Hopf or subcritical
may be indeterminate in which we cannot tell to which at-Hopf bifurcations may occur. If one were to inspect the map-
tractor the system may settle. Identifying such indeterminat@ing eigenvalues at the point of instability there would be a
subcritical secondary Hopf or Niemark bifurcations clearly pair of complex conjugate eigenvalues which cross the unit
contributes to our understanding of bifurcational phenomenecircle.
As described in a recent classification sty@y, such a bi- Supercritical Hopf bifurcations are continuous and always
furcation was generically possible, but no example had yetleterminate, in which the loss of stability of the equilibrium
been presented in the literature. Related studies on indetestate gives rise to a limit cycle; in effect this form of bifur-
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FIG. 2. Schematic representation of the saddle of connection.

cation of an equilibrium point can be categorized as the sepa-
ration point between an area contracting region with positive
damping, and an area expanding region due to negative
damping, at which the previously stable equilibrium point
becomes unstable, and a limit cycle develops. On the other
hand, subcritical Hopf bifurcations, as shown in Fi¢a)lare
discontinuous. The equilibrium which is stable far<u,
becomes unstable at= u; this occurs where there is coa-
lescence of an unstable limit cycle with the stable equilib-
rium state. Here any small perturbation from the equilibrium  FiG. 3. Indeterminate subcritical bifurcationéa) Attractor-
state results in a jump to a disconnected attractor. basin phase portrait just prior to an indeterminate subcritical bifur-
We may extend the bifurcations of equilibria to bifurca- cation in the window —1.2<x<1.2, —1.0<y<1.0. Here F
tions of cycles by considering a three dimensional differen—=0.01, x=0.03,D=0.9. Gray shading indicates the basin of at-
tial equation systenx=F(x,u), exhibiting periodic cycles traction of the period-one solution; white shading for the basin of
u<puc. Suppose that at these parameter values the systema#iraction of +infinity, black of —infinity. The dot represents the
locally dissapative. Ifu were to increase t@.., where the attractor.(b) A blow up of (&) in the window —0.3<x<0.3,
system is locally conservative, while considering that for —0.3<y<0.3.
<pu. itis area expanding in the neighborhood of the periodic
cycle, atu= . a bifurcation analogous to the supercritical Various authors have studied this type of problem: Cart-
Hopf bifurcation takes placgl1]. This bifurcation is often Wright and Littlewood[13] showed that competing subhar-
called asecondary Hopf bifurcatiomr a Niemark bifurca- ~monic responses may occur at the same set of parameters;
tion. Subcritical forms of this bifurcation occur when desta- Hayashi[14] showed that for small forcing levels the oscil-
bilizing nonlinearities dominate as the periodic cycle losedator does not lock onto the forcing frequency. Here the
its stability. Figure 1b) shows a subcritical secondary Hopf steady state is compounded with two frequencies, the natural
bifurcation. Here an unstable torus coalesces with a stablgéequency and the forcing frequency exhibiting a quasiperi-
periodic cycle atu= . leaving an unstable periodic cycle odic response; Guckenheimer and Holni&S] outlined bi-

for w>pc. furcation diagrams showing the possibility of chaotic behav-
We shall consider the example of a sinusiodally forcedior; Shaw[16] observed steady state chaotic behavior.
nonlinear oscillatof12] In particular, we consider a periodically forced oscillator

with nonlinear damping and nonlinear stiffness characteris-
X+ ux+ w’x+f(x,X) =F sinwt. tics that has the ability to escape from a asymmetric single
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potential well,V(x) =x%/2+ (D — 1)x3/3— Dx*/4 the vicinity of the attractor. In our example we have chosen
. g ) 3 i - ©=0.03 with u.~0.016. The critical condition, given on
X+ pux=x*+x+(D-1)x*=Dx*=F sinot, x=y. separating these two forms of bifurcations, is represented by

the saddle connectigrnin which a trajectory climbing out of

relatively large values of there is a stable periodic attractor the We'_' under DOSIU_VE dlve_rgence can just pass from the
S, that orginates fronfF =x=y=0. As we reduce the control !ower h|||_t0p to 'Fhe hlgher hilltop. Th_|s is termedragglar

w this periodic oscillation loses its stability at a subcritical indeterminate bifurcatiorithe generation of such a bifurca-
secondary Hopf bifurcation beyond which the divergence idion is described in[15,17,18). Here basins accumulate,
positive and all trajectories diverge to=+. As regards with vanishing thickness, onto the unstable limit cycle, in
the basin structure, the basin shrinks around the attractor adhat is termed by Stewart and UeftE8] a “mosquito coil
pinches it off at the critical control parameter; the size of thestructure.” The outcome of this local bifurcation is clearly
basin drops continuously to zero as the bifurcation is apunpredictable; in any real situation, due to the inherent un-
proached. The nonlinear stiffness corresponds to a metaertainties in the specification of the initial conditions or pa-
stable well similar to that in Fig. 2. The parameRerllows rameter values, long term predictability will be lost and
us to vary the relative heights of the two potential barriershence the jump will be indeterminate.

Taking the left hand barrier to be the higher, as drawn, it is In summary, we have described the phenomenon of inde-
clear that if the heights are very different then the bifurcationterminate subcritical secondary Hopf or Niemark bifurca-
will be determinate, with all motions tending to= * o, tions. We have shown that when such bifurcations occur we
Conversely, if the heights are nearly the same, the bifurcacannot tell to which attractor the system may settle. Identi-
tion will be indeterminate, with adjacent motions differing fying such an indeterminate subcritical secondary Hopf bi-
perhaps in their starting phase headingxte +«~. Figure furcations clearly contributes to our understanding of bifur-
3(a) shows the basin structures in the Poincagetion just cational phenomena since no example has yet been presented
before the bifurcation with Fig. (8) showing a blow up in in the literature.

We shall consider the case whdte=0.01 andw=0.95. For
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